Follower neurons in lobster (Panulirus interruptus) pyloric network regulate pacemaker period in complementary ways.

نویسندگان

  • Adam L Weaver
  • Scott L Hooper
چکیده

Distributed neural networks (ones characterized by high levels of interconnectivity among network neurons) are not well understood. Increased insight into these systems can be obtained by perturbing network activity so as to study the functions of specific neurons not only in the network's "baseline" activity but across a range of network activities. We applied this technique to study cycle period control in the rhythmic pyloric network of the lobster, Panulirus interruptus. Pyloric rhythmicity is driven by an endogenous oscillator, the Anterior Burster (AB) neuron. Two network neurons feed back onto the pacemaker, the Lateral Pyloric (LP) neuron by inhibition and the Ventricular Dilator (VD) neuron by electrical coupling. LP and VD neuron effects on pyloric cycle period can be studied across a range of periods by altering period by injecting current into the AB neuron and functionally removing (by hyperpolarization) the LP and VD neurons from the network at each period. Within a range of pacemaker periods, the LP and VD neurons regulate period in complementary ways. LP neuron removal speeds the network and VD neuron removal slows it. Outside this range, network activity is disrupted because the LP neuron cannot follow slow periods, and the VD neuron cannot follow fast periods. These neurons thus also limit, in complementary ways, normal pyloric activity to a certain period range. These data show that follower neurons in pacemaker networks can play central roles in controlling pacemaker period and suggest that in some cases specific functions can be assigned to individual network neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adam L . Weaver and Scott L . Hooper Complementary Ways Pyloric Network Regulate Pacemaker Period in ) Panulirus interruptusFollower Neurons in

[PDF] [Full Text] [Abstract] , October 1, 2003; 90 (4): 2378-2386. J Neurophysiol A. L. Weaver and S. L. Hooper interruptus) Pyloric Network Relating Network Synaptic Connectivity and Network Activity in the Lobster (Panulirus [PDF] [Full Text] [Abstract] , June 2, 2004; 24 (22): 5140-5150. J. Neurosci. A. Mamiya and F. Nadim Synapses Acts to Stabilize the Rhythm Period Dynamic Interaction ...

متن کامل

Synaptic dynamics do not determine proper phase of activity in a central pattern generator.

Rhythmic motor activity often requires neuronal output to the muscles to arrive in a particular sequence. At the pattern-generator level, this requires distinct activity phases in different groups of constituent neurons. The phase differences between rhythmically active neurons in a network are thought to arise from the interplay between their intrinsic properties and the temporal dynamics of s...

متن کامل

Relating network synaptic connectivity and network activity in the lobster (Panulirus interruptus) pyloric network.

The lobster pyloric network has a densely interconnected synaptic connectivity pattern, and the role individual synapses play in generating network activity is consequently difficult to discern. We examined this issue by quantifying the effect on pyloric network phasing and spiking activity of removing the Lateral Pyloric (LP) and Ventricular Dilator (VD) neurons, which synapse onto almost all ...

متن کامل

Slow conductances could underlie intrinsic phase-maintaining properties of isolated lobster (Panulirus interruptus) pyloric neurons.

The rhythmic pyloric network of the lobster stomatogastric system approximately maintains phase (that is, the burst durations and durations between the bursts of its neurons change proportionally) when network cycle period is altered by current injection into the network pacemaker (Hooper, 1997a,b). When isolated from the network and driven by rhythmic hyperpolarizing current pulses, the delay ...

متن کامل

Modulation of the lobster pyloric rhythm by the peptide proctolin.

The modulation of the pyloric network of the stomatogastric ganglion (STG) of the lobster Panulirus interruptus by the neuropeptide proctolin is described. First, the effects of proctolin on the pyloric motor patterns were characterized in terms of frequency and phase relations. Pyloric cycle frequency and lateral pyloric (LP) neuron activity increased and ventricular dilator (VD) neuron activi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2003